NAMIBIA UNIVERSITY # OF SCIENCE AND TECHNOLOGY ## FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES #### **DEPARTMENT OF HEALTH SCIENCES** | QUALIFICATION: BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES | | | | | | | | | | |--|---------------------------------------|--|--|--|--|--|--|--|--| | BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT | | | | | | | | | | | BACHELOR OF BIOME | EDICAL SCIENCES | | | | | | | | | | QUALIFICATION CODE: 08BEHS | 4 | | | | | | | | | | 07BHIS | LEVEL: 5 | | | | | | | | | | 50BBMS | | | | | | | | | | | COURSE CODE: HSC511S | COURSE NAME: HEALTH SCIENCE CHEMISTRY | | | | | | | | | | SESSION: JUNE 2022 | PAPER: THEORY | | | | | | | | | | DURATION: 3 HOURS | MARKS: 100 | | | | | | | | | | FIRST OPPORTUNITY EXAMINATION QUESTION PAPER | | | | | | | | | |--|-------------------|--|--|--|--|--|--|--| | EXAMINER(S) | Mr DAVID CARELSE | | | | | | | | | MODERATOR: | Dr MARIUS MUTORWA | | | | | | | | | INSTRUCTIONS | | | | | | | | | | |--------------|---|--|--|--|--|--|--|--|--| | 1 | Answer ALL the questions in the answer book provided. | | | | | | | | | | 2 | Write clearly and neatly. | | | | | | | | | | 3 | Number the answers clearly. | | | | | | | | | | 4. | All written work MUST be done in blue or black ink. | | | | | | | | | #### **PERMISSIBLE MATERIALS** 1. Scientific Calculator ### THIS QUESTION PAPER CONSISTS OF 10 PAGES (Including this front page, useful constants, and Periodic Table) - There are 20 multiple choice questions in this section. Each question carries 3 marks. - Answer ALL questions by selecting the letter of the correct answer. - 1. Write the following number 0.000004013 using scientific notation. - A. 4.013 x 10⁻⁶ - B. 4.013 - C. 4.013×10^6 - D. 4.01×10^7 - 2. Do the following calculation and give the answer to the correct number of significant figures - B. 3.6 - C. 3.558 - D. 0.6 - 3. How many grams does a 65-lb. bag of cement weigh? - A. 39545 g - B. 29545 g - C. 45445 g - D. 24745 g - 4. A toddler with a fever has a temperature of 103° F. What is this temperature reading in Celsius? - A. 39.4° C - B. 37.1°C - C. 42.7° C - D. 35.3°C - 5. List the following ions in order of increasing ionic radius: N³-, Na+, F-, Mg²+, O²- - A. Na⁺, Mg²⁺, F⁻, O²⁻, N³⁻ - B. Mg²⁺, Na⁺, F⁻, O²⁻, N³⁻ - C. F-, O²⁻, N³⁻, Mg²⁺, Na⁺ - D. Mg²⁺, Na⁺, N³⁻, O²⁻, F⁻ - 6. Identify the electron with the following quantum numbers: $$n=3$$; $\ell = 2$; $m\ell = 1$; $m_s = -\frac{1}{2}$ - A. 3d⁸ - B. 3p⁹ - C. 3d⁹ - D. 2d⁹ - 7. Give the condensed electron configuration of the following element: K+ - A. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ - B. [Ar] 4s¹ - C. $1s^2 2s^2 2p^6 3s^2 3p^6$ - D. [Ar] - 8. Balance the following equation by providing the missing coefficients: $$AI (OH)_3 + H_2SO_4 \rightarrow AI_2 (SO_4)_3 + H_2O$$ - A. 1, 3, 1, 2 - B. 2, 3, 2, 6 - C. 2, 3, 1, 6 - D. 2, 6, 1, 3 - 9. How many molecules are in 0.77 moles of a substance? - A. 8.3 x 10²¹ molecules - B. 4.1 x 10²⁶ molecules - C. 3.8 x 10²⁴ molecules - D. 4.6 x 10²³ molecules - 10. How many grams of Na₂SO₄, are required to make 0.350 L of 0.500 M Na₂SO₄? - A. 24.9 g Na₂SO₄ - B. 23.4 g Na₂SO₄ - C. 34.9 g Na₂SO₄ - D. 28.9 g Na₂SO₄ - 11. Which of the following is the right combination of oxidation numbers for the following compound: Mn₂O₇? - A. Mn = +2, O = +7 - B. Mn = +14, O = -2 - C. Mn = +7, O = -2 - D. Mn = +2, O = -7 - 12. Which of the following are examples for colloidal systems in which the dispersed phase is solid and the dispersion phase is gas? - A. Smoke, dust - B. Fog, liquid sprays - C. Milk, mayonnaise - D. None of the above 13. What is the molality of a solution that contains 1208g of methanol (CH₃OH) in 1208g of water? - A. 26.25m CH₃OH - B. 47.25m CH₃OH - C. 37.25m CH₃OH - D. 31.25m CH₃OH' 14. From the following list select the elements that are metals: - A. II, III - B. I, III, IV, V, - C. I, IV, V, VI - D. III, IV, V 15. What is the freezing point of a solution that contains 8.50 g of benzoic acid (C_6H_5COOH , MW = 122) in 75.0 g of benzene, C_6H_6 ? (f_p =5.48; k_f =5.12)? - A. 0.72°C - B. 4.76 °C - C. 2.34°C - D. 1.76 °C 16. What is the name of the following alkene according to the IUPAC rules? - A. 2-ethyl-4-bromo-But-2-ene - B. 5-bromo-3-methyl-pent-3-ene - C. 1-bromo-3-methyl-pent-2-ene - D. 5-bromo-hex-2-ene | | $0.00251\ mol\ of\ NH_3$ effuse through a hole in 2.47 min, how much HCl would effuse the same time? | |--------|--| | A. | 0.0017 Moles | | B. | 1.4643 Moles | | C. | 0.0251 Moles | | D. | 0.1701 Moles | | 18. A | gas is least soluble in a liquid at: | | A. | low temperature and low pressure. | | B. | high temperature and high pressure. | | C. | high temperature and low pressure. | | D. | low temperature and high pressure. | | 19. Fr | om the following thermochemical equation, how much heat is created in 79.2 g O₂? | | | $CH_4 (g) + 2O_2 (g) \longrightarrow CO_2 (g) + 2H_2O (I) \Delta H - 890.4 kJ$ | | A. | – 1204 kJ | | В. | – 2402 kJ | | C. | – 1102 kJ | | D. | – 2204 kJ | | 20. W | hat is the osmotic pressure of a 0.01M solution of glucose at 25°C? | | A. | 185.7 mmHg | | В. | 255.3 mmHg | | C. | 278.1 mmHg | | D. | 145.4 mmHg | | | | **END OF SECTION A** SECTION B [40] • There are **7** questions in this section. Answer all Questions. • Show clearly, where necessary, how you arrive at the answer as the working will carry marks too. Question 1 [3] An element consists of 1.40% of an isotope with mass 203.973 amu, 24.10% of an isotope with mass 205.9745 amu, 22.10% of an isotope with mass 206.9759 amu, and 52.40% of an isotope with mass 207.9766 amu. Calculate the average atomic mass and identify the element. Question 2 [6] Ethylene glycol, the substance used in the automobile antifreeze and recently vape cartridges for e-cigarettes, it is composed of 38.7% C, 9.7% H, and 51.6% O by mass. Its molar mass is 62.1 g/mol. - A. What is the empirical formula of ethylene glycol? - B. What is the molecular formula of ethylene glycol? Question 3 [6] In a process for producing silver, $AgNO_3$ solution and copper are reacted in an electrochemical vessel producing $Cu(NO_3)_2$ as a byproduct. The following equation represents the overall reaction. $$Cu + 2 AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$$ In a laboratory test of this reaction, 20.0 g Cu and 10.0 g AgNO₃ were put into a reaction vessel. - A. How many grams of silver can be produced by this reaction from these amounts of reactants? - B. How many grams of the excess reactant remain after the reaction is complete? - C. If you obtain 5.70 g of silver from the experiment, what is the percentage yield of silver? Question 4 [8] The following equation under acidic conditions represents a redox process involved in a spectrophotometric determination of the permanganate ion. Balance the equation. $MnO_4^- + I^- \rightarrow MnO_2 + I_2$ Question 5 [7] State seven (7) factors affecting the stability of colloids Question 6 [5] If 0.340 mol of a non-volatile non-electrolyte are dissolved in 3.00 mol of water, what is the vapor pressure of the resulting solution? (The vapor pressure of pure water is 23.8 torr at $25.0\,^{\circ}\text{C.}$) - A. Calculate the mole fraction of the solvent - B. Calculate the vapor pressure Question 7 [5] Briefly describe the following terms? - A. Electron Affinity - B. Colligative property - C. Colloidal particle - D. Accuracy - E. Solubility THE END ### **USEFUL CONSTANTS:** Gas constant, R $$= 0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$ $= 0.08206 L atm mol^{-1} . K^{-1}$ 1.609km = 1mile $$1 \text{ Pa.m}^3 = 1 \text{ kPa.L} = 1 \text{ N.m} = 1 \text{ J}$$ Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $$1 \text{ kg} = 2.2 \text{ lb}$$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$ 1mile = 5280ft Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$ | 1 | Periodic Table of the Elements | | | | | | | | | | | | 18 | | | | | |---------------------------------|--------------------------------|--------------------------|------------------------------------|--|-------------------------------|--------------------------------|------------------------------|---------------------------------|---------------------------------|-----------------------------|----------------------------|---------------------------------|---------------------------|------------------------------|-----------------------------|-------------------------------|------------------------------| | H
Hydrogen
1.008 | 2 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | He
Helium
4,003 | | 3
Li
Lithium | Be
Berylium | | | | | | | | | | | 5
B
Boron | 6
Carbon | 7
N
Nitrogen | 8
Oxygen | 9
F
Fluorine | Ne
Neon | | Na
Sodium | 12
Mg
Magnesium | | | _ | | - | ۰ | • | 10 | | 40 | 10.511
Al
Alaminum | 12.011
Si
Siicon | IS P
Phosphorus | IS.777
I6
Sulfur | 17
CI
Chlorine | 18
Ar
Argon | | 19
K | 24305
20
Ca | 3
21
S c | 22
Ti | 23 V | 6
24
Cr | 7
Mn | Fe | 9
Co | 10
28
Ni
Nickel | 29
Cu | 12
30
Zn
Zinc | 31
Ga
Galium | 32
G e | 30.974
33
As | Se | 35.453
Br | 39,948
36
Kr | | 39.098
37 | 40.078
38 | Scandium
44.956
39 | 47.88 | Vanadium
50,942 | 51.996
42 | Manganese
54.938 | 55.933
44 | Cobalt
58.933 | 58.693
46 | 63.546
47 | 65.39
48 | 69.732
49 | 72.61
50 | Arsenic
74.922 | 5elenium
78.09 | 79.904
53 | 64.80
54 | | Rb
Rubidium
84.468 | Sr
Strontium
87.62 | Y
Yttrium
88,906 | Zr
Zirconium
91.224 | Nb
Niobium
92,906 | Mo
Molibdenum
95.94 | Tc
Technetium
96.907 | Ru
Ruthenium
101.07 | Rh
Rhodium
102.906 | Pd
Palladium
106.42 | Ag
Salver
107.868 | Cd
Cadmium
112,411 | In
Indium | Sn
Tm
118.71 | Sb
Antimony
121,760 | Te
Telurium
127.6 | lodine
126,904 | Xe
Xenon
131,29 | | Cs
Cesium
132,905 | 56
Ba
Barium
137,327 | 57-71
Lanchanides | 72
Hf
Hafnium
178.49 | 73
Ta
Tantalum
180.348 | 74
W
Tungsten
183.85 | 75
Re
Rhenium
184.207 | 76
Os
Osmium
190.23 | 77
Ir
Iridium
192.22 | 78
Pt
Platinum
195.08 | 79
Au
Gold
196.967 | Hg
Mercury
200.59 | 81
TI
Thallium
204.383 | 82
Pb
Lead
207.2 | Bi
Bismuth
206,960 | Po
Polonium
[206.962] | At
Astatine
209,387 | 86
Rn
Radon
222.018 | | 87
Fr
Francium
223,020 | Ra
Radium
226.025 | 89-103
Actinides | IO4
Rf
Rutherfordum
[261] | Db
Dubnium
[262] | Seaborgum
[266] | Bh
Bohrium
(264) | HS
Hassium
[269] | Mt
Mt
Meitnerium
[268] | Ds
Ds
Darmandoum
[269] | Rg
Roentgenium
[272] | Cn
Copernicium
[277] | Uut
Ununtrium
unknown | Flerovium [289] | Uup
Ununpendum
unknown | | Uus
Ununseptium
unknown | Uuo
Ununoctium
unknown | | La
La
Landianum
138,906 | Ce
Cerium | Pr
Pr
fraseodymium
140.908 | Nd | Pm | Sm | Eu
Europium | Gd
Gadolinium
157.25 | Tb | Dy
Dysprosium
162.50 | Ho
Holmium | Erbium | 69
Tm
Thulium
168,934 | 70
Yb
Ytterbium
173,04 | Lu
Lutetium
174,967 | |----------------------------------|--------------|-------------------------------------|---------|----------------------------------|---------------------------------|----------------------------------|-------------------------------|----------|------------------------------------|------------------|--------------------------|--------------------------------|---------------------------------|---------------------------------| | Ac
Actinium
227,028 | %
Th | Pa
Procactinium
231,036 | 92
U | 93
Np
Neptunium
237.048 | 94
Pu
Putonium
244.064 | 95
Am
Americium
243.061 | 96
Cm
Curium
247,070 | 97
Bk | 98
Cf
Californium
251.000 | 99
E s | Fm
Fermium
257,095 | | 102
No | Lr
Lr
Lawrencium
[262] |