

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF HEALTH SCIENCES

QUALIFICATION: BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES									
BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT									
BACHELOR OF BIOME	EDICAL SCIENCES								
QUALIFICATION CODE: 08BEHS	4								
07BHIS	LEVEL: 5								
50BBMS									
COURSE CODE: HSC511S	COURSE NAME: HEALTH SCIENCE CHEMISTRY								
SESSION: JUNE 2022	PAPER: THEORY								
DURATION: 3 HOURS	MARKS: 100								

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER								
EXAMINER(S)	Mr DAVID CARELSE							
MODERATOR:	Dr MARIUS MUTORWA							

INSTRUCTIONS									
1	Answer ALL the questions in the answer book provided.								
2	Write clearly and neatly.								
3	Number the answers clearly.								
4.	All written work MUST be done in blue or black ink.								

PERMISSIBLE MATERIALS

1. Scientific Calculator

THIS QUESTION PAPER CONSISTS OF 10 PAGES

(Including this front page, useful constants, and Periodic Table)

- There are 20 multiple choice questions in this section. Each question carries 3 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- 1. Write the following number 0.000004013 using scientific notation.
 - A. 4.013 x 10⁻⁶
 - B. 4.013
 - C. 4.013×10^6
 - D. 4.01×10^7
- 2. Do the following calculation and give the answer to the correct number of significant figures

- B. 3.6
- C. 3.558
- D. 0.6
- 3. How many grams does a 65-lb. bag of cement weigh?
 - A. 39545 g
 - B. 29545 g
 - C. 45445 g
 - D. 24745 g
- 4. A toddler with a fever has a temperature of 103° F. What is this temperature reading in Celsius?
 - A. 39.4° C
 - B. 37.1°C
 - C. 42.7° C
 - D. 35.3°C

- 5. List the following ions in order of increasing ionic radius: N³-, Na+, F-, Mg²+, O²-
 - A. Na⁺, Mg²⁺, F⁻, O²⁻, N³⁻
 - B. Mg²⁺, Na⁺, F⁻, O²⁻, N³⁻
 - C. F-, O²⁻, N³⁻, Mg²⁺, Na⁺
 - D. Mg²⁺, Na⁺, N³⁻, O²⁻, F⁻
- 6. Identify the electron with the following quantum numbers:

$$n=3$$
; $\ell = 2$; $m\ell = 1$; $m_s = -\frac{1}{2}$

- A. 3d⁸
- B. 3p⁹
- C. 3d⁹
- D. 2d⁹
- 7. Give the condensed electron configuration of the following element: K+
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
 - B. [Ar] 4s¹
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6$
 - D. [Ar]
- 8. Balance the following equation by providing the missing coefficients:

$$AI (OH)_3 + H_2SO_4 \rightarrow AI_2 (SO_4)_3 + H_2O$$

- A. 1, 3, 1, 2
- B. 2, 3, 2, 6
- C. 2, 3, 1, 6
- D. 2, 6, 1, 3

- 9. How many molecules are in 0.77 moles of a substance?
 - A. 8.3 x 10²¹ molecules
 - B. 4.1 x 10²⁶ molecules
 - C. 3.8 x 10²⁴ molecules
 - D. 4.6 x 10²³ molecules
- 10. How many grams of Na₂SO₄, are required to make 0.350 L of 0.500 M Na₂SO₄?
 - A. 24.9 g Na₂SO₄
 - B. 23.4 g Na₂SO₄
 - C. 34.9 g Na₂SO₄
 - D. 28.9 g Na₂SO₄
- 11. Which of the following is the right combination of oxidation numbers for the following compound: Mn₂O₇?
 - A. Mn = +2, O = +7
 - B. Mn = +14, O = -2
 - C. Mn = +7, O = -2
 - D. Mn = +2, O = -7
- 12. Which of the following are examples for colloidal systems in which the dispersed phase is solid and the dispersion phase is gas?
 - A. Smoke, dust
 - B. Fog, liquid sprays
 - C. Milk, mayonnaise
 - D. None of the above

13. What is the molality of a solution that contains 1208g of methanol (CH₃OH) in 1208g of water?

- A. 26.25m CH₃OH
- B. 47.25m CH₃OH
- C. 37.25m CH₃OH
- D. 31.25m CH₃OH'

14. From the following list select the elements that are metals:

- A. II, III
- B. I, III, IV, V,
- C. I, IV, V, VI
- D. III, IV, V

15. What is the freezing point of a solution that contains 8.50 g of benzoic acid (C_6H_5COOH , MW = 122) in 75.0 g of benzene, C_6H_6 ? (f_p =5.48; k_f =5.12)?

- A. 0.72°C
- B. 4.76 °C
- C. 2.34°C
- D. 1.76 °C

16. What is the name of the following alkene according to the IUPAC rules?

- A. 2-ethyl-4-bromo-But-2-ene
- B. 5-bromo-3-methyl-pent-3-ene
- C. 1-bromo-3-methyl-pent-2-ene
- D. 5-bromo-hex-2-ene

	$0.00251\ mol\ of\ NH_3$ effuse through a hole in 2.47 min, how much HCl would effuse the same time?
A.	0.0017 Moles
B.	1.4643 Moles
C.	0.0251 Moles
D.	0.1701 Moles
18. A	gas is least soluble in a liquid at:
A.	low temperature and low pressure.
B.	high temperature and high pressure.
C.	high temperature and low pressure.
D.	low temperature and high pressure.
19. Fr	om the following thermochemical equation, how much heat is created in 79.2 g O₂?
	$CH_4 (g) + 2O_2 (g) \longrightarrow CO_2 (g) + 2H_2O (I) \Delta H - 890.4 kJ$
A.	– 1204 kJ
В.	– 2402 kJ
C.	– 1102 kJ
D.	– 2204 kJ
20. W	hat is the osmotic pressure of a 0.01M solution of glucose at 25°C?
A.	185.7 mmHg
В.	255.3 mmHg
C.	278.1 mmHg
D.	145.4 mmHg

END OF SECTION A

SECTION B [40]

• There are **7** questions in this section. Answer all Questions.

• Show clearly, where necessary, how you arrive at the answer as the working will carry marks too.

Question 1 [3]

An element consists of 1.40% of an isotope with mass 203.973 amu, 24.10% of an isotope with mass 205.9745 amu, 22.10% of an isotope with mass 206.9759 amu, and 52.40% of an isotope with mass 207.9766 amu. Calculate the average atomic mass and identify the element.

Question 2 [6]

Ethylene glycol, the substance used in the automobile antifreeze and recently vape cartridges for e-cigarettes, it is composed of 38.7% C, 9.7% H, and 51.6% O by mass. Its molar mass is 62.1 g/mol.

- A. What is the empirical formula of ethylene glycol?
- B. What is the molecular formula of ethylene glycol?

Question 3 [6]

In a process for producing silver, $AgNO_3$ solution and copper are reacted in an electrochemical vessel producing $Cu(NO_3)_2$ as a byproduct. The following equation represents the overall reaction.

$$Cu + 2 AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$$

In a laboratory test of this reaction, 20.0 g Cu and 10.0 g AgNO₃ were put into a reaction vessel.

- A. How many grams of silver can be produced by this reaction from these amounts of reactants?
- B. How many grams of the excess reactant remain after the reaction is complete?
- C. If you obtain 5.70 g of silver from the experiment, what is the percentage yield of silver?

Question 4 [8]

The following equation under acidic conditions represents a redox process involved in a spectrophotometric determination of the permanganate ion. Balance the equation.

 $MnO_4^- + I^- \rightarrow MnO_2 + I_2$

Question 5 [7]

State seven (7) factors affecting the stability of colloids

Question 6 [5]

If 0.340 mol of a non-volatile non-electrolyte are dissolved in 3.00 mol of water, what is the vapor pressure of the resulting solution? (The vapor pressure of pure water is 23.8 torr at $25.0\,^{\circ}\text{C.}$)

- A. Calculate the mole fraction of the solvent
- B. Calculate the vapor pressure

Question 7 [5]

Briefly describe the following terms?

- A. Electron Affinity
- B. Colligative property
- C. Colloidal particle
- D. Accuracy
- E. Solubility

THE END

USEFUL CONSTANTS:

Gas constant, R

$$= 0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

 $= 0.08206 L atm mol^{-1} . K^{-1}$

1.609km = 1mile

$$1 \text{ Pa.m}^3 = 1 \text{ kPa.L} = 1 \text{ N.m} = 1 \text{ J}$$

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

$$1 \text{ kg} = 2.2 \text{ lb}$$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

1mile = 5280ft

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

1	Periodic Table of the Elements												18				
H Hydrogen 1.008	2											13	14	15	16	17	He Helium 4,003
3 Li Lithium	Be Berylium											5 B Boron	6 Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	Ne Neon
Na Sodium	12 Mg Magnesium			_		-	۰	•	10		40	10.511 Al Alaminum	12.011 Si Siicon	IS P Phosphorus	IS.777 I6 Sulfur	17 CI Chlorine	18 Ar Argon
19 K	24305 20 Ca	3 21 S c	22 Ti	23 V	6 24 Cr	7 Mn	Fe	9 Co	10 28 Ni Nickel	29 Cu	12 30 Zn Zinc	31 Ga Galium	32 G e	30.974 33 As	Se	35.453 Br	39,948 36 Kr
39.098 37	40.078 38	Scandium 44.956 39	47.88	Vanadium 50,942	51.996 42	Manganese 54.938	55.933 44	Cobalt 58.933	58.693 46	63.546 47	65.39 48	69.732 49	72.61 50	Arsenic 74.922	5elenium 78.09	79.904 53	64.80 54
Rb Rubidium 84.468	Sr Strontium 87.62	Y Yttrium 88,906	Zr Zirconium 91.224	Nb Niobium 92,906	Mo Molibdenum 95.94	Tc Technetium 96.907	Ru Ruthenium 101.07	Rh Rhodium 102.906	Pd Palladium 106.42	Ag Salver 107.868	Cd Cadmium 112,411	In Indium	Sn Tm 118.71	Sb Antimony 121,760	Te Telurium 127.6	lodine 126,904	Xe Xenon 131,29
Cs Cesium 132,905	56 Ba Barium 137,327	57-71 Lanchanides	72 Hf Hafnium 178.49	73 Ta Tantalum 180.348	74 W Tungsten 183.85	75 Re Rhenium 184.207	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.967	Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	Bi Bismuth 206,960	Po Polonium [206.962]	At Astatine 209,387	86 Rn Radon 222.018
87 Fr Francium 223,020	Ra Radium 226.025	89-103 Actinides	IO4 Rf Rutherfordum [261]	Db Dubnium [262]	Seaborgum [266]	Bh Bohrium (264)	HS Hassium [269]	Mt Mt Meitnerium [268]	Ds Ds Darmandoum [269]	Rg Roentgenium [272]	Cn Copernicium [277]	Uut Ununtrium unknown	Flerovium [289]	Uup Ununpendum unknown		Uus Ununseptium unknown	Uuo Ununoctium unknown

La La Landianum 138,906	Ce Cerium	Pr Pr fraseodymium 140.908	Nd	Pm	Sm	Eu Europium	Gd Gadolinium 157.25	Tb	Dy Dysprosium 162.50	Ho Holmium	Erbium	69 Tm Thulium 168,934	70 Yb Ytterbium 173,04	Lu Lutetium 174,967
Ac Actinium 227,028	% Th	Pa Procactinium 231,036	92 U	93 Np Neptunium 237.048	94 Pu Putonium 244.064	95 Am Americium 243.061	96 Cm Curium 247,070	97 Bk	98 Cf Californium 251.000	99 E s	Fm Fermium 257,095		102 No	Lr Lr Lawrencium [262]